

Multi-Resolution Planning in Large Uncertain Environments

Leslie Pack Kaelbling MIT AI Laboratory

with Terran Lane and Georgios Theocharous

- Near-deterministic abstractions for MDPs
- Near-deterministic abstractions for POMDPs
- Enormous simulated robotic domain
- Demonstrate on real robot
- Teleological decomposition

How to select actions in a very large uncertain domain?

- Markov decision processes are a good formalization for uncertain planning
- Optimization algorithms for MDPs are polynomial
- in the size of the state space
- which is exponential in the number of state variables!!

Abstraction and Decomposition

Our only hope is to divide and conquer

- state abstraction: treat sets of states as if they were the same
- state decomposition: solve restricted problems in subparts of the state space
- action abstraction: treat sequences of actions as if they were atomic
- teleological abstraction: solve restricted problems for sub-parts of the utility function

Hierarchical Uncertain Planning

Given a set of subgoals

 Compute macro actions: optimal strategies for achieving the subgoals

Compose a policy out of the macros

How to Choose Subgoals?

Given a set of subgoals

- Compute macro actions: optimal strategies for achieving the subgoals
 - time polynomial in size of state space
 - ⇒ reduce macros to small subdomains
- Compose a policy out of the macros
 - time polynomial in the number of macros
 - solution quality improves with number of macros (in general)
 - \Rightarrow ??

Some common action abstractions

- put it in the bag
- go to the conference room
- take out the trash

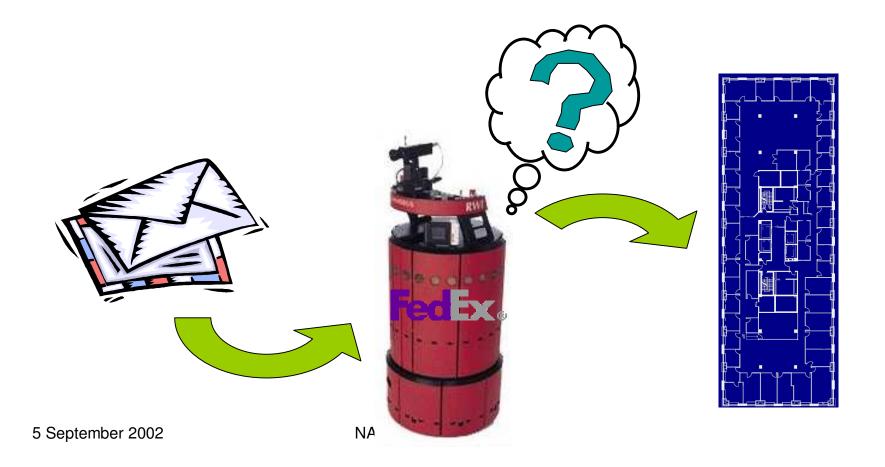
What's important about them?

- even if the world is highly stochastic,
- you can very nearly guarantee their success

Encapsulate uncertainty at the lower level of abstraction

Sample Domain: Mail Delivery

When it absolutely, positively has to be there...



The target domain

10 Floors

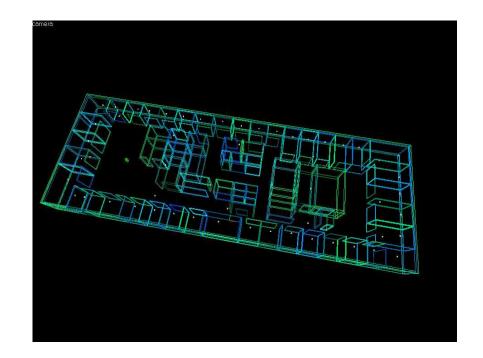
~1800 locations per floor

45 mail drops per floor

Limited battery

11 actions

Total: $|S| > 2^{500}$ states



Two planning problems in one

Problem 1: uncertainty

Can't guarantee specific path through world

Solution 1: Markov Decision Process

- Advantage: accounts for uncertainty exactly
- Disadvantage: Doesn't scale well

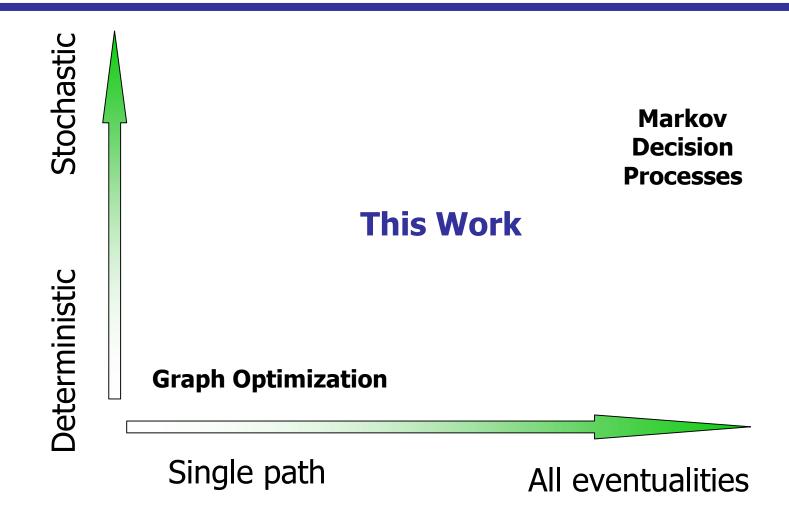
Problem 2: routing

Path selection combinatorially complex

Solution 2: TSP optimization

- Advantage: scales (relatively) well
- Disadvantage: Doesn't account for uncertainty

Situating this work



A simple example

State space:

- X
- Y
- *b* (reached goal)

Actions:

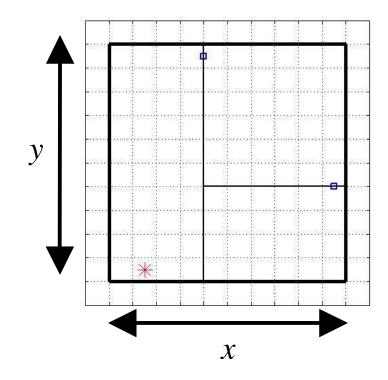
• N, S, E, W

Transition function:

Noise, walls

Rewards:

- - ϵ /step until b = 1
- 0 thereafter



$$|S| = |X| |Y| 2$$

With k destinations we have $|X||Y|\beta^k$ ossible states!

One for each possibly combination of packages that remain to be delivered

Macros deliver single packages

Macro is a plan over a restricted state space

Defines how to achieve *one* goal from any $\langle x,y \rangle$ location

Terminates at *any* goal

Can be found quickly

Encapsulates uncertainty

Goal b2

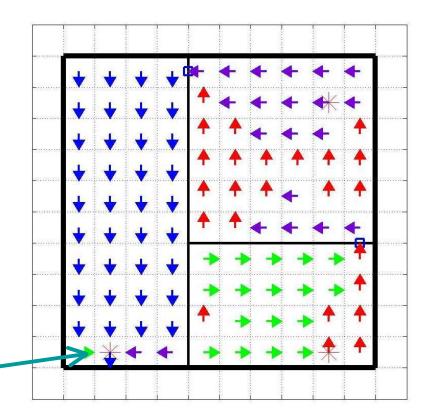
Macro is a plan over a restricted state space

Defines how to achieve *one* goal from any $\langle x, y \rangle$ location

Terminates at any goal

Can be found quickly

Encapsulates uncertainty



Goal b2

Combining Macros

Formally: solve semi-MDP over $\{b\}^k$

- Gets all macro interactions & probs right
- Still exponential, though...

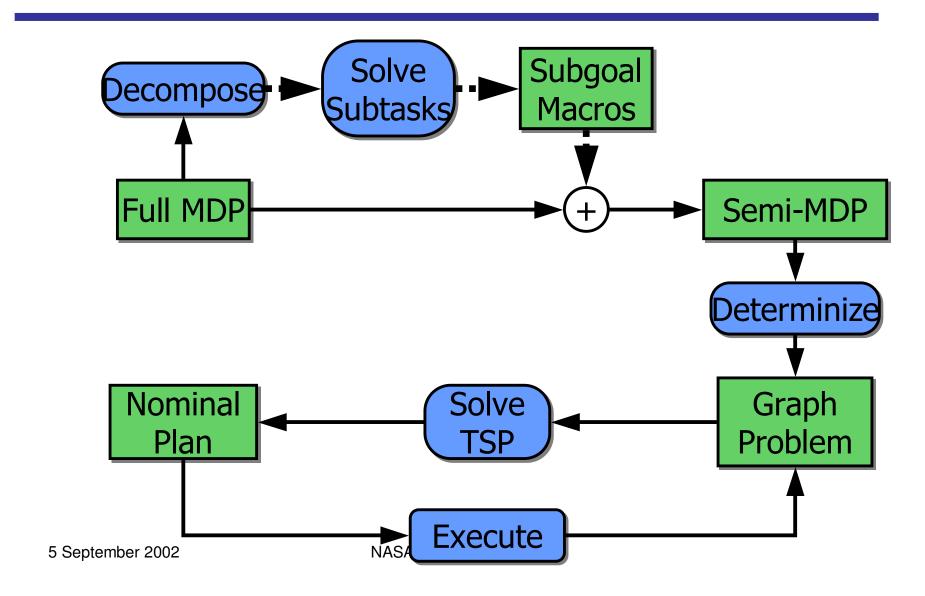
These macros are close to deterministic

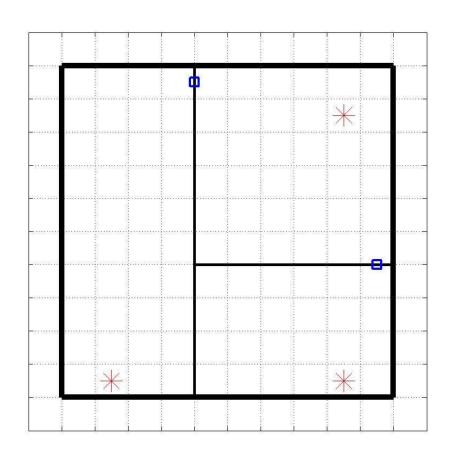
Low prob. of delivering wrong package

Macros form graph over $\{b_1 \dots b_k\}$

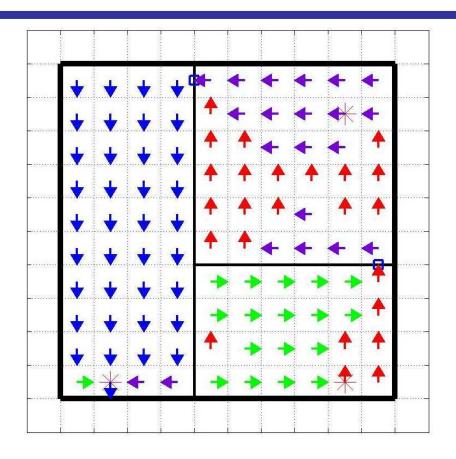
Reduce SMDP to graph optimization problem

Planner overview



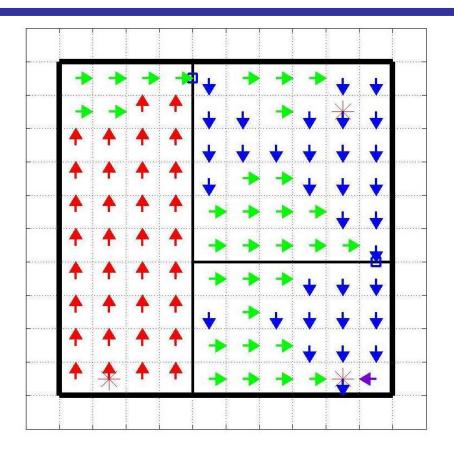


$$|S| = |X||Y|2^k$$



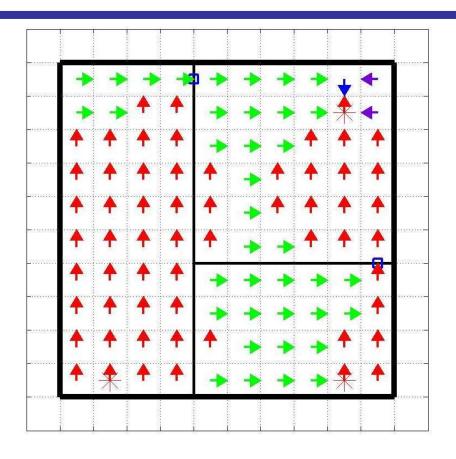
|S| = |X||Y|

Time: $O((|X||Y|)^3)$



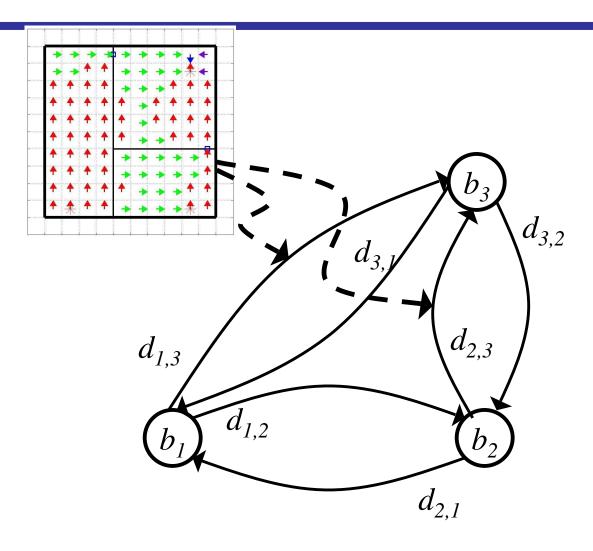
$$|S| = |X||Y|$$

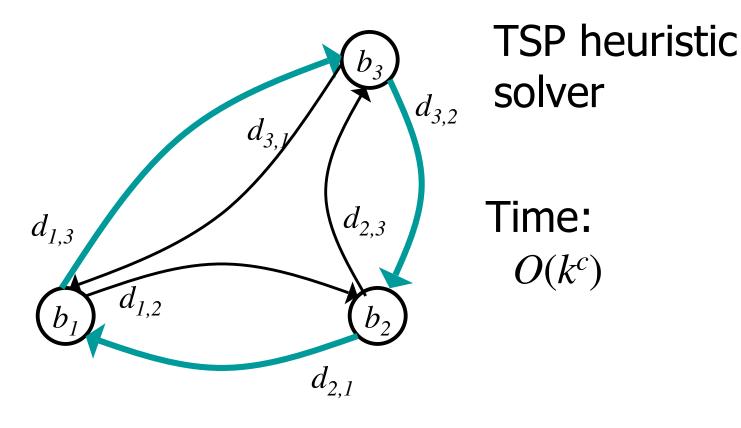
Time:
$$O((|X||Y|)^3)$$

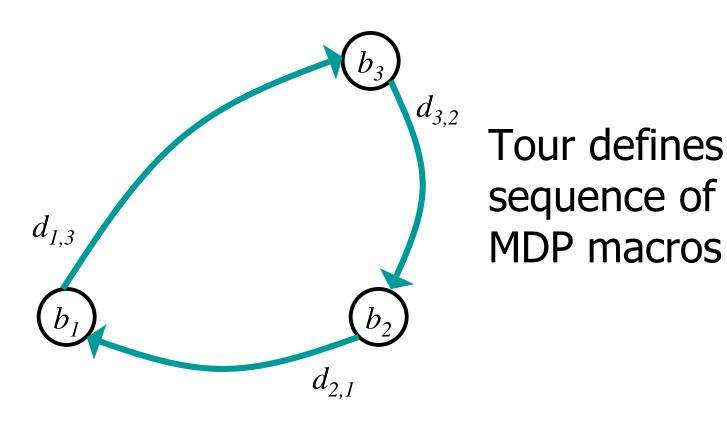


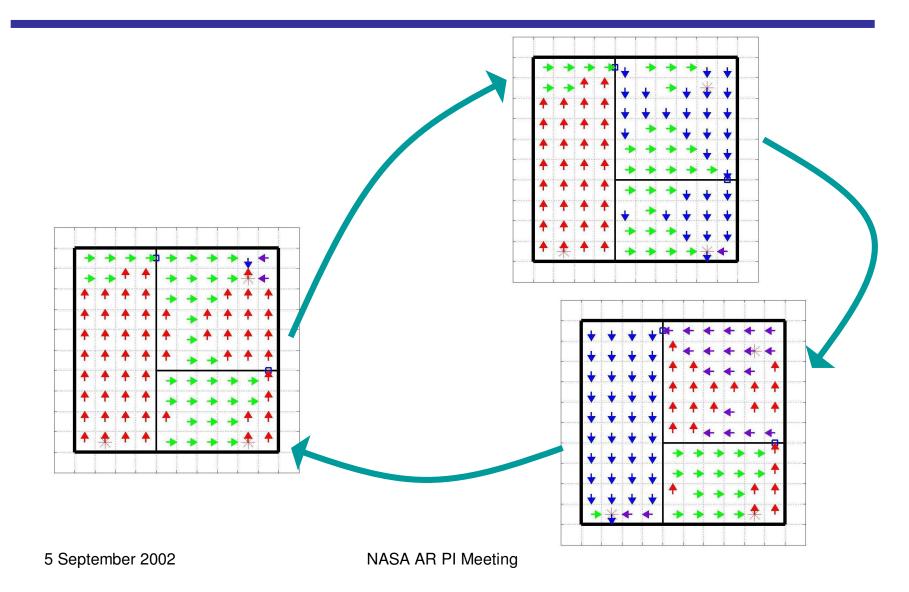
|S| = |X||Y|

Time: $O((|X||Y|)^3)$









Yes! (Well, in simulation, anyway...)

Small, randomly generated scenarios

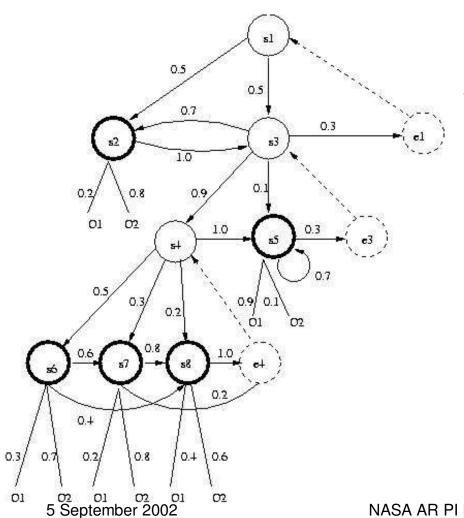
- Up to ~60k states (≤6 packages)
- Optimal solution directly
- 5.8% error on avg

Larger scenarios, based on bldg model

- Up to ~2⁵⁵ states (~45 packages)
- Can't get optimal soln.
- 600 trajectories; no macro failures
- Theorem gives error bound of 0.3%

- You can never be sure of the state of the world
- Take uncertainty into account when selecting actions
- POMDP models do this formally
- Wildly intractable, practically
- Hierarchy can help enormously

Hierarchical Hidden Markov Models

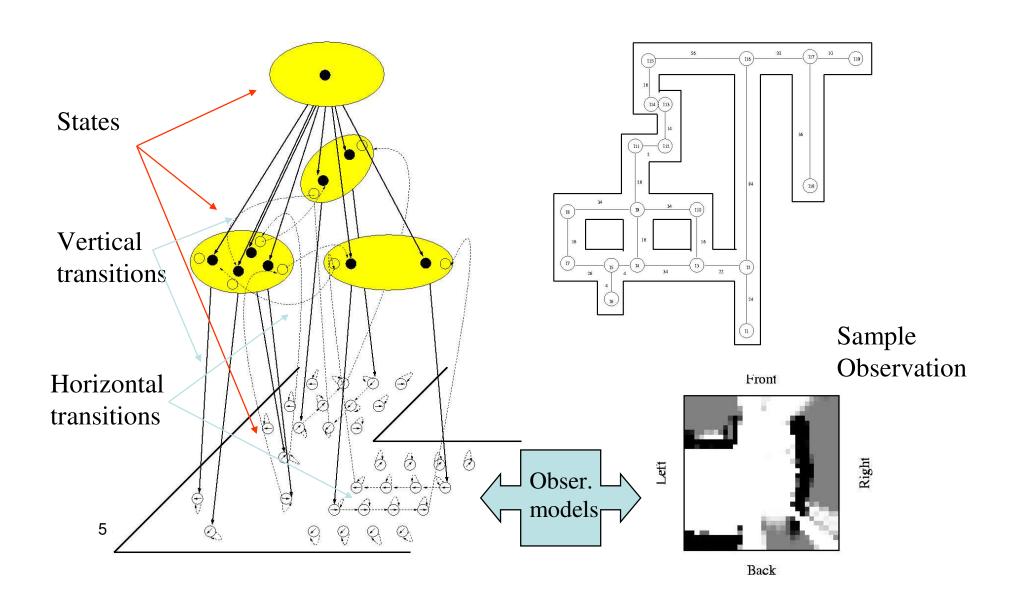


Models hierarchical sequential data Special case of SCFGs Past applications:

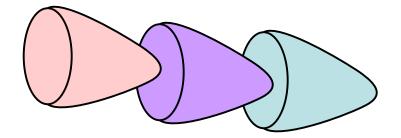
- Models of natural English text (Fine)
- Identify cursive handwriting strokes (Fine)
- Hierarchical visual tracking of people (Murphy)

NASA AR PI Meeting

Representing Spatial Environments cs/



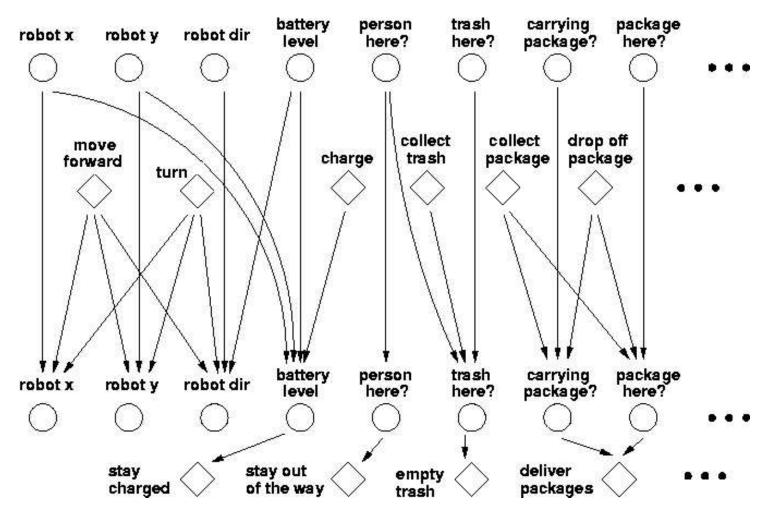
- Previous work on HPOMDPs for state estimation
- Current research project: acting in HPOMDPs
 - macros map belief states to actions
 - choose macros that reliably achieve subsets of belief states
 - "dovetailing"



Port to Real Robot

NASA AR PI Meeting

Really Big Domain

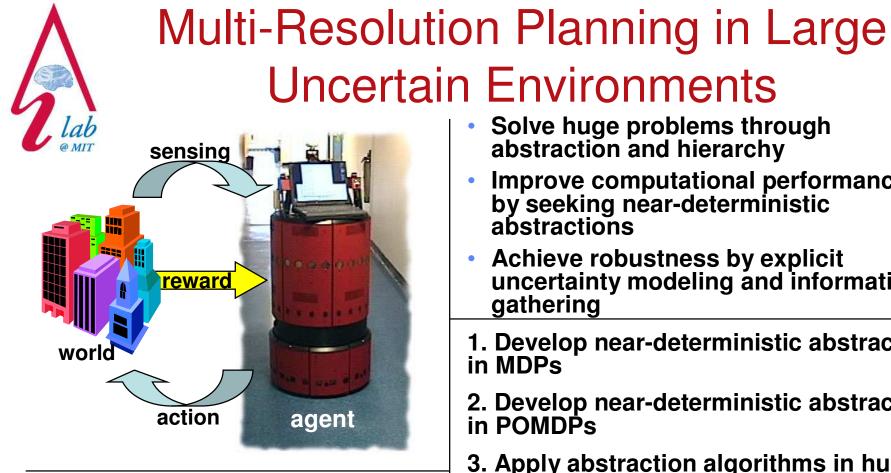


Working in Huge Domains

Continually remap the huge problem to smaller subproblems of current import

Decompose along lines of utility function; recombine solutions

Juergen Schmidhuber



Robots capable of extended operations in hugely complex, uncertain multi-objective domains on land and in space

- Solve huge problems through abstraction and hierarchy
- Improve computational performance by seeking near-deterministic abstractions
- **Achieve robustness by explicit** uncertainty modeling and information gathering
- 1. Develop near-deterministic abstractions in MDPs
- 2. Develop near-deterministic abstractions in POMDPs
- 3. Apply abstraction algorithms in huge simulated robotic domain
- 4. Demonstrate planning system on real robot domain
- 5. Develop abstractions based on simultaneous goals

3/01 3/02 3/03 3/04